Tag Archives: compressor generator

China high quality Compressor for Oxygen Generator Oil Free Medical Use 12v air compressor

Product Description

Compressor for Oxygen Generator Oil Free Medical Use          

  

Introduction Oxygen Compressor

Compressor for Oxygen Generator refers to the compressor used to pressurize oxygen and achieve delivery. 
Oxygen is a violent accelerant, prone to combustion and explosion. 
Attention should be paid to the design and use of Compressor for Oxygen Generator:

(1) Compressed gas parts are strictly forbidden to contact with oil, the cylinder is not lubricated with water and glycerin or oil-free lubrication, and the oil is not stained when maintenance and the solvent must be cleaned and dried before assembly.
(2) Because of the high humidity during water lubrication and the rising temperature during compression, the oxygen from the wet gas holder is corrosive, so the material in contact with oxygen should be corrosion-resistant, and requires good heat and electrical conductivity. The cylinder is generally made of phosphor bronze, the piston is made of aluminum alloy, and the intercooler is made of copper tube or stainless steel tube.
(3) The average speed of the piston should be low, and the gas velocity in the pipeline should also be lower than that in the air compressor.
(4) The exhaust temperature should not be too high, not higher than 100~120ºC when lubricated with water, and not higher than 160ºC when filled with oil-free lubrication structure. The pressure ratio at each level should not be too high.

 

Product Specification

 

No. Item Data
1 Working medium Oxygen
2 Model GOW-30/4-200
3 Structure oil free reciprocating
4 Pressure stage 4 stage
5 Capacity 30Nm3
6 Inlet pressure 3~4bar
7 Outlet pressure 200bar
8 Cooling way Water / Air
9 Motor power 13.5kw
10 Motor power Overload, stop automatic
11 External dimension 1650*950*1470mm
12 Weight 960kg

 

 

Advantage Oxygen Compressor

Cape-Golden’s Compressor for Oxygen Generator is the preferred machine for pollution-free sealed oxygen compression. Our Compressor for Oxygen Generator is with high quality and reliable performance, reducing maintenance costs and extending service interval cycles. CHINAMFG customers have reported up to 40,000 hours of use without having to replace any parts. 
To compress oxygen, fluorine, and other highly reactive gases, CHINAMFG follows rigorous cleaning procedures in a clean, dust-free environment.
We offer many different types of Compressor for Oxygen Generator, ranging from basic machine to turnkey engineering, slide mounting and computer control systems.
With our extensive experience in compressor technology and our state-of-the-art engineering and manufacturing capabilities, we work closely with our customers to provide them with the best solutions for their oxygen compression needs.

 

 

Typical Applications

Typical applications of Compressor for Oxygen Generator include but are not limited to the following:
1. Fill and unload oxygen from long tube trailer
2. Cylinder filled compressors with oxygen and bulk storage tanks
3. Used for oxygen stirring, recovery and mixing
4. Oxygen used for cutting and welding metal
5. Oxygen feedstock for chemical, petrochemical and pharmaceutical industries
6. Oxygen used in glass manufacturing and pulp and paper industry
7. Oxygen used in metal refining and oxidation processes in the chemical industry
8. Oxygen is supercharged and stored by high pressure compression
9. Oxygen for diving and medical care services

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 7950/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

How Do You Transport Gas Air Compressors to Different Job Sites?

Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:

1. Equipment Size and Weight:

The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.

2. Transportation Modes:

Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:

  • Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
  • Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
  • Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.

3. Securing and Protection:

It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.

4. Permits and Regulations:

Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.

5. Route Planning:

Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.

6. Equipment Inspection and Maintenance:

Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.

In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.

air compressor

How Do You Choose the Right Size Gas Air Compressor for Your Needs?

Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:

1. Required Airflow:

Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.

2. Operating Pressure:

Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.

3. Duty Cycle:

Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.

4. Tank Size:

The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.

5. Power Source:

Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.

6. Portability:

Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.

7. Noise Level:

If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.

8. Manufacturer Recommendations:

Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.

By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.

China high quality Compressor for Oxygen Generator Oil Free Medical Use   12v air compressorChina high quality Compressor for Oxygen Generator Oil Free Medical Use   12v air compressor
editor by CX 2024-04-10

China Professional Vehicle-Mounted Diesel Engine Nitrogen Generator Injection System Membrane Nitrogen Production N2 Compressor supplier

Product Description

Company Profile

 

The company’s main products include desulfurization, dehydrocarbons, separation, compression, filling, storage and transportation equipment for natural gas extraction in oil and gas fields; complete sets of wellhead gas recovery equipment; complete sets of vented natural gas recovery equipment; complete sets of coalbed methane, shale gas and biogas development and utilization equipment Equipment; CNG filling station complete equipment; LNG complete equipment; BOG compressor; large-displacement screw-piston compound compressor; membrane nitrogen and adsorption nitrogen production complete equipment; in addition, hydrogen, oxygen, nitrogen, argon, carbon monoxide gas, carbon dioxide gas, coal gas, hydrogen sulfide gas, propylene gas, ethylene gas, methyl chloride gas, trifluoropropane gas, liquefied petroleum gas and other special gases, low-temperature gases and air compressors. Among them, the W and V series non-lubricated compressors produced by introducing advanced foreign technology have reached the international advanced level.

 

Product Description

Membrane nitrogen production
In order to meet the requirements of downhole nitrogen filling, underbalanced drilling technology, pipeline nitrogen replacement and other requirements. Our company has developed a screw low-pressure air compressor + membrane nitrogen production system + high-pressure nitrogen booster and compression system. It can provide users with high-pressure nitrogen with a flow rate of 600-2000Nm3/h and a pressure of 15-40MPa.
The nitrogen production system is designed to be skid-mounted and installed on 2 skids. The system is divided into 3 modules, screw low-pressure air compressor module, membrane nitrogen production system module, and high-pressure nitrogen booster compressor module. The screw low-pressure air compressor module and membrane nitrogen generation system module are installed on 1 skid, and the high-pressure nitrogen booster compressor system is on another skid. The system is air-cooled and driven by a diesel engine. The skid is equipped with a metal cover, which can be easily installed on the chassis of the car and is suitable for field operations.
Adsorption ammonia production
Our company produces various adsorption ammonia production equipment. Among them, adsorption ammonia production, special gas recovery, purification, and purification are our company’s unique technologies. They have the advantages of reasonable configuration, complete functions, high reliability, and easy operation.
Processing capacity: 50-600Nm3/h
Ammonia purity: 95-9939%
Ammonia final outlet pressure: 0.7-40MPa
Recovery, purification and purification of special gases
Medium: ammonia, argon, etc.
Processing capacity: 400-600Nm3/h
Purification purity: can be purified from 75% to 95-99.95%
Purified gas loss rate: ≤5%
After purification, the pressure will be increased to 25-40MPa according to user needs.
Parameters of nitrogen production system

Nitrogen flow rate: 600-2000NM3/H
Nitrogen purity: ≥95% (Vol1%) (no oxygen N, Ar content, ) (95%-99.9% continuously adjustable)
Nitrogen pressure: 40Mpa
Power: Motors/ Diesel engine
Cooling Air/water
Skid size: 9500*2500*2400(mm)
Adapted to high wind and sand working conditions in the wild, the whole body is skid-mounted on the vehicle.
Design altitude: 2000M
Work time: 24 hours continuously
Nitrogen generation time after startup: 10min
Ambient temperature range: -20ºC-+45ºC
Ambient humidity range: ≤85%

 

Type Nitrogen production Nm3/h Exhaust pressure Mpa
KZD-600/40 600 40
KZD-900/40 900 40
KZD-1200/40 1200 40
KZD-2000/25 2000 25
KZD-2000/40 2000 40

 

Detailed Photos

After Sales Service

In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
 

Training plan

Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
 

Packaging & Shipping

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Month
Warranty: 12 Month
Lubrication Style: Lubricated

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

What Is a Gas Air Compressor?

A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:

1. Power Source:

A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.

2. Portable and Versatile:

Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.

3. Compressor Pump:

The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.

4. Pressure Regulation:

Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.

5. Applications:

Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.

6. Maintenance and Fuel Considerations:

Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.

Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.

China Professional Vehicle-Mounted Diesel Engine Nitrogen Generator Injection System Membrane Nitrogen Production N2 Compressor   supplier China Professional Vehicle-Mounted Diesel Engine Nitrogen Generator Injection System Membrane Nitrogen Production N2 Compressor   supplier
editor by CX 2024-02-18

China wholesaler Wholesale High-Pressure Natural Gas Natural Gas Generator Compressor for Petrochemical Plants portable air compressor

Product Description

Oil Free CH4/O2/N2/CNG/CO2/CFCs/He/SF6/Ar/H2 Compressor Booster:

Product Description

Our factory produced many kinds of oil free compressor, inlcuding oil free oxygen compressor, oil free gas compressor, including air, nitrogen gas, hydrogen gas, natural gas, Argon gas, helium gas, Sf6 gas ects more than 30 kinds of gas medium,max pressure up to 40Mpa.

 

A natural gas compressor is a mechanical device designed to increase the pressure of natural gas, enabling its efficient transportation and storage. Compressors are vital components in the natural gas industry, facilitating the movement of gas across pipelines and ensuring a reliable supply to end users.

 

Natural gas compressors offer several advantages. Firstly, they enhance gas transmission efficiency by increasing the pressure, allowing for the transportation of larger volumes over long distances. This helps to optimize the utilization of existing pipelines and infrastructure.

 

Secondly, natural gas compressors contribute to reduced energy consumption. By compressing the gas, its density increases, which leads to lower energy requirements during transportation. This translates into cost savings and a more environmentally friendly operation.

 

Additionally, natural gas compressors play a crucial role in maintaining safety within the industry. They help prevent gas leaks by maintaining the pressure at optimal levels, reducing the risk of accidents and ensuring the protection of personnel and infrastructure.

 

These compressors find extensive applications in various sectors. They are commonly used in gas pipelines to maintain the required pressure levels for efficient gas transportation. Natural gas processing plants employ compressors to handle gas during different stages of production, including compression for storage and distribution. Storage facilities also utilize compressors to increase the pressure of gas for effective storage and withdrawal.

 

In summary, natural gas compressors are indispensable in the natural gas industry. They offer advantages such as efficient gas transmission, reduced energy consumption, and improved safety. With their wide range of applications, these compressors enable the reliable and efficient utilization of natural gas as a clean and versatile energy source.

Hydrogen compressors are commonly used in applications such as:

1. Gas Pipelines: Natural gas compressors are essential for maintaining the required pressure levels in gas pipelines. They enable the efficient transmission of natural gas over long distances, ensuring a steady flow and maximizing pipeline capacity.

2. Natural Gas Processing Plants: Compressors play a vital role in natural gas processing plants. They are used during different stages of production, including compression for storage, transportation, and distribution. Compressors help maintain the optimal pressure required for various processes, ensuring smooth operations and efficient handling of the gas.

3. Storage Facilities: Natural gas compressors are employed in storage facilities to increase the pressure of gas during storage and withdrawal. They facilitate effective storage capacity by compressing the gas, allowing for greater volume to be stored within the available space.

4. LNG Terminals: Compressors are crucial components in liquefied natural gas (LNG) terminals. They assist in the re-gasification process, where LNG is converted back into its gaseous form for distribution. Compressors help increase the pressure and temperature of the gas, making it suitable for transportation through pipelines.

5. Industrial Applications: Natural gas compressors are used in various industrial applications where high-pressure gas is required. They are utilized in sectors such as manufacturing, power generation, chemical plants, and refineries. Compressors ensure a reliable supply of compressed natural gas for process heating, power generation, and other industrial operations.

6. CNG Refueling Stations: Compressors play a critical role in compressed natural gas (CNG) refueling stations. They compress natural gas to high pressures required for fueling vehicles running on CNG. Compressors at refueling stations ensure a rapid and efficient refueling process, enabling the widespread adoption of CNG as a transportation fuel.

Product Parameters

Output

 

Nm³/h

Rated

Inlet Pressure 

Mpa

Rated 

Outlet Pressure 

Mpa

Rated Power

KW

Volume Flow Of The 

Matched CO2 Generator 

Nm³/h

Cooling Type
3~5 0.3~0.7 1~20 4.0 3-5 Wind
8~12 0.3~0.7 1~20 5.5~7.5 8-12 Wind
15~16 0.3~0.7 1~20 11 15-16 Wind
20 0.3~0.7 1~20 15 20 Wind
24~25 0.3~0.7 1~20 15 24-25 Wind
30 0.3~0.7 1~20 15 30 Water
40 0.3~0.7 1~20 15 40 Water
50 0.3~0.7 1~20 18.5 50 Water
60~70 0.3~0.7 1~20 22 60-70 Water
80~90 0.3~0.7 1~20 15×2 80-90 Water
110~130 0.3~0.7 1~20 22×2 110-130 Water
150 0.3~0.7 1~20 22×2 150 Water
The inlet pressure of the oil-free oxygen booster can be between 0-1.0MPa, and the outlet pressure can reach up to 20Mpa. It is suitable for various output and can be customized according to the specific requirements of customers.

Selection Xihu (West Lake) Dis.

Selection principle of oil-free booster (Oxygen and nitrogen as examples)
1. Working conditions: Compressed medium; Inlet pressure; Exhaust pressure; Exhaust volume (Sometimes referring to the production volume of oxygen generator and nitrogen generator)
2. Determine the compressor model according to the working conditions
3. Common sense description
    Nm³/h is m³ of exhaust gas per hour under standard conditions; Nm³/min is m³ of exhaust gas per minute under standard conditions
    1bar=0.1Mpa≈1kgf
    The relationship between the flow rate in the pressure state and the flow rate in the standard state: the flow rate in the standard state = the flow rate in the pressure state × (fluid pressure + atmospheric pressure), the atmospheric pressure is usually 1 bar.

 

Product Advantages

1. Superior Efficiency: Our compressor is engineered with advanced technology to deliver exceptional efficiency. It maximizes gas transmission rates, allowing for the transportation of larger volumes over longer distances. This optimizes pipeline capacity and minimizes energy losses, resulting in cost savings and enhanced operational productivity.

 

2. Energy Optimization: We prioritize energy efficiency in our compressor design. By compressing the gas and increasing its density, our compressor significantly reduces energy consumption during transportation. This not only lowers operational costs but also aligns with sustainability goals by minimizing carbon emissions and promoting environmental stewardship.

 

3. Enhanced Safety Features: Safety is paramount in our compressor design. We have implemented robust safety features to mitigate the risk of gas leaks and ensure personnel and infrastructure protection. Our compressor maintains optimal pressure levels and incorporates advanced monitoring systems for reliable and secure operation.

 

4. Versatile Application: Our compressor is designed to meet diverse industry needs. It finds application across various sectors, including gas pipelines, natural gas processing plants, storage facilities, LNG terminals, and industrial settings. Its versatility allows for seamless integration into different operations, making it a reliable solution for a wide range of applications.

 

5. Reliability and Durability: We prioritize quality and reliability in our compressor manufacturing. Our products are built to withstand demanding operating conditions and deliver consistent performance over an extended lifespan. With proper maintenance, our compressor ensures reliable operation, minimizing downtime and maximizing productivity.

 

6. Customization and Adaptability: We understand that different projects have unique requirements. Our compressors offer flexibility and customization options to meet specific project needs. We work closely with our customers to provide tailored solutions, ensuring optimal performance and compatibility with existing infrastructure.

 

Customizable Technical Parameters: For more detailed technical specifications and additional requirements specific to your needs, please contact us. We offer a range of oil-free Natural gas compressors with varying capabilities and features to cater to diverse application demands.

Product Show

 

Project Case

After-sales Service: Online Support, Video Technical Support
Warranty: 12 Months
Lubrication Style: Oil-free
Samples:
US$ 6500/Unit
1 Unit(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

What Are the Key Components of a Gas Air Compressor Control Panel?

A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:

1. Power Switch:

The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.

2. Pressure Gauges:

Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).

3. Control Knobs or Buttons:

Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.

4. Emergency Stop Button:

An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.

5. Motor Start/Stop Buttons:

Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.

6. Control Indicators:

Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.

7. Control Panel Display:

Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.

8. Start/Stop Control Circuit:

The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.

9. Safety and Protection Devices:

Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.

10. Control Panel Enclosure:

The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.

In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.

air compressor

What Are the Advantages of Using a Gas Air Compressor Over an Electric One?

Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:

1. Portability and Mobility:

Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.

2. Independence from Electricity:

One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.

3. Versatility in Fuel Options:

Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.

4. Higher Power Output:

Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.

5. Continuous Operation:

Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.

6. Quick Startup and Response:

Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.

7. Durability and Resistance to Voltage Fluctuations:

Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.

8. Lower Energy Costs:

Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.

Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.

China wholesaler Wholesale High-Pressure Natural Gas Natural Gas Generator Compressor for Petrochemical Plants   portable air compressorChina wholesaler Wholesale High-Pressure Natural Gas Natural Gas Generator Compressor for Petrochemical Plants   portable air compressor
editor by CX 2023-10-23